超构材料与红外探测芯片的结合

作者:采集侠 发布时间:2019-10-10 00:31:12 点击数:96

超构材料具有强大的电磁波参量调控与分辨功能,可以构成多功能的超薄平面光学元件。由于超构材料的制造工艺与集成电路芯片的制造工艺是一致的,而目前集成电路的工艺节点尺寸已达到了10nm以下的精度,因此大规模制备基于超构材料的多功能电磁参量调控元件也不存在根本性的障碍。用超构材料取代单一功能的传统红外光学元件,并与红外探测芯片结合,势必革新传统的红外成像探测系统架构,导致结构更为紧凑、功能更为多样的红外探测成像系统出现,而这也契合了红外探测芯片和成像系统的未来发展趋势:在系统紧凑化、轻量化的基础上实现更多的功能。以下,对近年来国内、外在将超构材料与红外探测芯片结合、压缩成像系统体积并实现新型探测功能方面的代表性工作进行了回顾与梳理。

3.1 超构材料调控探测芯片的光谱响应

日本三菱电子公司高等技术研究所的Shinpei Ogawa等人从2012年开始发表了一系列论文,报道了如何将超构材料吸收体集成在基于掺杂多晶硅的热电堆探测器像元上,实现波长选择型探测和偏振选择型探测。如图13(a)、图13(b)所示,论文采用了圆形金属槽阵列作为具有波长选择功能的超构材料吸收体。从图13(c)可以看出,超构材料吸收体只在某个峰值波长附近较窄的波长范围内具有高吸收率,而通过调节金属槽阵列的单元周期,可以调控峰值吸收波长。因此,超构材料吸收体起到了波长可调的吸收式窄带滤光片的作用。如果将超构材料吸收体与热电堆探测器的像元进行集成,如图13(d)、图13(e)所示,就可以实现波长可调的窄带热探测。需要指出的是,热探测材料对入射光的波长是没有分辨能力的,因此传统的热探测器的光谱响应是宽带的,而要实现窄带热探测,一般要依赖外加的分立式窄带滤光片。超构材料吸收体的引入,使热探测器在像元层次上具有独立分辨电磁波长的能力,可以在不依赖分立式窄带滤光片的前提下便实现窄带探测,这使得基于热探测像元阵列的非制冷红外焦平面有了更大的设计自由度。图13(f)展示了如何构建像元阵列,并独立调控每个像元上集成的吸收体的吸收波长,从而实现中红外波段的多波长探测功能。图13(g)给出了两个像元的响应率与入射光波长的关系曲线,即光谱响应率。这两个像元分别集成了具有不同吸收波长的吸收体,因此,它们的光谱响应率的峰值也分别位于不同的波长处。图13(h)则给出了8个像元的峰值响应波长。可以看出,通过调节金属槽阵列的单元周期,像元的峰值响应波长可以覆盖整个中红外波段。集成超构材料吸收体的热电堆像元的制造工艺流程如图13(i)所示,该流程采用了与CMOS兼容的工艺,因此可以利用集成电路芯片的生产线进行大规模生产。